NR - Numerology

Since release 15, new radio (NR) system has explicitly proposed the concept of numerology, which is used to represent the scaling of subcarrier bandwidth, FFT size, etc.

Above all, a reference numerology is defined based on

\begin{align*} \Delta_{\mathrm{subc, ref}} &= 15 \text{ kHz}, \\ N_{\mathrm{FFT, ref}} &= 2048. \end{align*}

Accordingly, the sampling rate the sample duration can be written as

\begin{align*} f_{\mathrm{s, ref}} &= \Delta_{\mathrm{subc, ref}} N_{\mathrm{FFT, ref}}, \\ T_{\mathrm{s, ref}} &= \frac{1}{f_{\mathrm{s, ref}}} = \frac{1}{\Delta_{\mathrm{subc, ref}} N_{\mathrm{FFT, ref}}}. \end{align*}

Additionally, an extreme numerology is also defined based on

\begin{align*} \Delta_{\mathrm{subc, max}} &= 480 \text{ kHz}, \\ N_{\mathrm{FFT, max}} &= 4096, \end{align*}

Similarly, the sampling rate and sample duration can be expressed as

\begin{align*} f_{\mathrm{s, max}} &= \Delta_{\mathrm{subc, max}} N_{\mathrm{FFT, max}}, \\ T_{\mathrm{s, max}} &= \frac{1}{f_{\mathrm{s, max}}} = \frac{1}{\Delta_{\mathrm{subc, max}} N_{\mathrm{FFT, max}}}. \end{align*}

The ratio of the two sample durations above is denoted by

\begin{align*} \kappa \triangleq \frac{T_{\mathrm{s, max}}}{T_{\mathrm{s, ref}}} \equiv 64. \end{align*}

Then, other configurations can be accordingly scaled relative to the reference numerology. Supported numerologies can be listed in Table 1. For convenient reference, a numerology indicator is defined based on the subcarrier bandwidth, i.e.,

\begin{align*} \mu \triangleq \log_{2} \frac{\Delta_{\mathrm{subc}}}{\Delta_{\mathrm{subc, ref}}}. \end{align*}
Table 1: Supported numerologies
\(\mu\) \(\Delta_{\mathrm{subc}}\) (kHz) CP type
0 15 NCP
1 30 NCP
2 60 NCP/ECP
3 120 NCP
4 240 NCP

Regarding frame structure, following hierarchy is adopted.

\begin{align*} N_{\mathrm{symbol}}^{\mathrm{slot}} = \begin{cases} 14, & \text{NCP}; \\ 12, & \text{ECP}. \end{cases} \end{align*}