Direction Cosine

In 3-dimension (3-D) space, a non-zero vector can be denoted by

\begin{align*} \mathbf{v} = v_x \mathbf{e}_x + v_y \mathbf{e}_y + v_z \mathbf{e}_z, \end{align*}

where

For vector \(\mathbf{v}\), its direction cosine vector can be expressed as

\begin{align*} \begin{bmatrix} \cos\alpha \\ \cos\beta \\ \cos\gamma \end{bmatrix} &= \begin{bmatrix} \dfrac{v_x}{\| \mathbf{v}\|_2} \\ \dfrac{v_y}{\| \mathbf{v}\|_2} \\ \dfrac{v_z}{\| \mathbf{v}\|_2} \end{bmatrix} \\ &= \dfrac{\mathbf{v}}{\| \mathbf{v}\|_2} \\ &\triangleq \mathbf{e}_v, \end{align*}

where